Smoothness selection for penalized quantile regression splines.
نویسندگان
چکیده
Modern data-rich analyses may call for fitting a large number of nonparametric quantile regressions. For example, growth charts may be constructed for each of a collection of variables, to identify those for which individuals with a disorder tend to fall in the tails of their age-specific distribution; such variables might serve as developmental biomarkers. When such a large set of analyses are carried out by penalized spline smoothing, reliable automatic selection of the smoothing parameter is particularly important. We show that two popular methods for smoothness selection may tend to overfit when estimating extreme quantiles as a smooth function of a predictor such as age; and that improved results can be obtained by multifold cross-validation or by a novel likelihood approach. A simulation study, and an application to a functional magnetic resonance imaging data set, demonstrate the favorable performance of our methods.
منابع مشابه
Nonparametric M-quantile Regression via Penalized Splines
Quantile regression investigates the conditional quantile functions of a response variables in terms of a set of covariates. Mquantile regression extends this idea by a “quantile-like” generalization of regression based on influence functions. In this work we extend it to nonparametric regression, in the sense that the M-quantile regression functions do not have to be assumed to be linear, but ...
متن کاملRegularized Quantile Regression and Robust Feature Screening for Single Index Models.
We propose both a penalized quantile regression and an independence screening procedure to identify important covariates and to exclude unimportant ones for a general class of ultrahigh dimensional single-index models, in which the conditional distribution of the response depends on the covariates via a single-index structure. We observe that the linear quantile regression yields a consistent e...
متن کاملModelling Regression Quantile Process using Monotone B-splines
Quantile regression as an alternative to conditional mean regression (i.e., least square regression) is widely used in many areas. It can be used to study the covariate effects on the entire response distribution by fitting quantile regression models at multiple different quantiles or even fitting the entire regression quantile process. However, estimating the regression quantile process is inh...
متن کاملVariable Selection in Quantile Regression
After its inception in Koenker and Bassett (1978), quantile regression has become an important and widely used technique to study the whole conditional distribution of a response variable and grown into an important tool of applied statistics over the last three decades. In this work, we focus on the variable selection aspect of penalized quantile regression. Under some mild conditions, we demo...
متن کاملFiltering Time Series with Penalized Splines
The decomposition and filtering of time series is an important issue in economics and econometrics and related fields. Even though there are numerous competing methods on the market, in application one often meets one of the few favorites. The first method to mention in this selection is the so called Hodrick & Prescott (1997)-filter (HP-filter hereafter). The idea is to decompose a time series...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The international journal of biostatistics
دوره 8 1 شماره
صفحات -
تاریخ انتشار 2012